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CARTESIAN DYNAMICS OF SIMPLE MOLECULES 
I1 NON-CENTROSYMMETRIC LINEAR TRIATOMICS 

Key Words: Molecular vibrations; infrared spectroscopy; 
Raman spectroscopy; lattice dynamics. 

A. Anderson and J . H .  Lefebvre 

Department of Physics, 
University of Waterloo 

Waterloo, Ontario 
Canada, N2L 3G1 

ABSTRACT 

A simple spring model for molecular vibrations, which uses 
Cartesian co-ordinates for both longitudinal and transverse 
displacements, is applied to non-centrosymmetric linear triatomic 
molecules. Analytical expressions for the stretching and bending 
mode frequencies are obtained, which are equivalent to those 
derived by conventional methods. For most molecules, the effects 
of the interaction between the outside atoms are shown to be 
negligible, but for N20, complex solutions are obtained unless 
this is included. The validity of the model is demonstrated by 
the satisfactory agreement between calculated and observed 
frequencies of isotopic species. For N20, frequency shifts 

resulting from isotopic substitution are explained by reference 
t o  the calculated eigenvectors. 

INTRODUCTION 
1 In a previous paper , a simple spring model for molecular 

vibrations which uses Cartesian co-ordinates was described and 

applied to diatomic and centrosymmetric triatomic molecules. 
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124 ANDERSON AND LEFEBVRE 

This approach was shown to be equivalent to the usual one 

involving internal co-ordinates, such as bond lengths and angles, 

and intrinsically more suitable for extensions to lattice 

dynamics In this communication, the model is 

extended to the case of linear triatomic molecules which lack a 

centre of symmetry. 

Analytical expressions are derived for the normal mode 

frequencies of these molecules, and the principal force constants 

are evaluated with the use of data from the observed Raman and 

infrared spectra. In addition, it is shown that additional 

spectroscopic information from isotopic molecules may in 

principle be utilised to obtain estimates of the smaller force 

constant modelling the interaction between the two outside atoms. 

The geometry for these molecules, which have point group 

is shown in Figure 1 (a). They may be categorized as ABC 

type molecules, but A and B may be the same, as in N20. There 

are 9 degrees of freedom. of which 3 correspond to pure 

translations and 2 to pure rotations. The remaining 4 internal 

degrees of freedom correspond to 2 stretching modes (v and v 
1 3' 

u* species) involving displacements along the molecular axis, and 

a doubly degenerate bending mode ( v z ,  K species) in which the 

displacements are perpendicular to this axis. All modes involve 

both dipole and polarizability changes and so are active in both 

infrared and Raman spectra. The approximate form of the normal 

modes is shown in Figure 1 (b). 
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CARTESIAN DYNAMICS 125  

( a )  

(b) -0 

6 9 
-0 

8 
0 

( c )  w, 0-a 0 

FIG. 1 Geometry and Normal Modes of ABC Linear Molecules 
(a) Geometry, showing masses, bond lengths and centre of 

(b) Typical normal modes, with w the A-B stretch, w the 
mass, 0. 

bend, and w the B-C stretch. 
1 2 

3 
(c) Eigenvectors f o r  N 0, with w1 the asymmetric stretch 

2 
and w the symmetric stretch (see text). 

2 

FIG. 2 Spring Constant Model for ABC Linear Molecules 
(a) Longitudinal Springs K 
(b) Transverse springs 6 

K2 and K3. 
1' 
a2 and ~ 5 ~ .  

1' 
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126 ANDERSON AND LEFEBVRE 

DESCRIPTION OF THE MODEL 

We first consider the motion along the molecular z-axis and 

Following the principles 
3' 

derive expressions for v and v 

outlined in the first paper of this series , we introduce 

longitudinal springs K K and K as shown in Figure 2 (a). The 

equations of motion in the z direction for the 3 atoms, according 

to Newton's second law and Hooke's law, are as follows: 

1 
1 

1 '  2 3 

m 1 1  z = - K ~  (zl - z2) - ~ ~ ( 2 ,  - z3) 

m 2 2  z = - K ~ ( = ~  - zl) - K ~ ( Z ~  - z3) 

m 3 3  z = - K ~ ( Z ~  - z2] - K ~ ( Z ,  - zl) 

For harmonic oscillations, z = z cos wt, and so 
n no 

2 2 z = -w z cos ot = -w 2 

Substitution leads to 3 coupled linear equations of the following 
no n 

form: 
2 

1 1  
m w z  

2 
2 2  

m w z  

2 

3 3  

These equations lead 

m w z  

2 m u  - K 1 - K 3  
1 

K1 

K3 

- Kl[zl - z2] - K3(z1 - z3)  = 0 

- Kl[z2 - zl)  - K2(z2 - z3) = 0 

- K2(z3 - z2) - K3(z3 - zl) = 0 

to the following secular determinant: 

K1 K3 

K2 

K2 3 2 

2 = o  m u  - K  - K 2  
2 1 

2 m u  - K  - K 3  

When this determinant is expanded in the usual way, a power 

series in w is obtained of the form 2 
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CARTESIAN DYNAMICS 127 

(1 )  

It is easily shown that D = 0, so that w is a factor. Hence 

w = o is an allowed root, corresponding to a pure translation in 

the z direction z = z = z ) .  The other two non-zero roots 

may be determined from the resulting quadratic equation in w . 

6 4 2 Aw + B w  + C w  + D = O  

2 

[ 10 20 30 
2 

Following Herzberg', we use the well-known expressions for the 

sum and product of these roots, w and w to obtain the 

following expressions for the eigenfrequencies: 

1 3' 

1 2  1 3  2 3  [ 2 2  

1 3  
a n d w w  =C/A= K K  + K K  + K K  

It is expected that K3, representing the 

well-separated outer atoms, will be much 

If it is neglected completely, the above 

following: 

+ m2 + m3)/m1m2m3 (3 )  

interaction between the 

smaller than K1 and K2. 

equations reduce to the 

w 2 + w 2 z K  - + -  + K  - + -  
1 3 1[il :,1 2 [ i 2  :,1 ( 4 )  

and w2w2 1 3 sz K1K2 (ml + m2 + m3)/mlm2m3 (5) 

7 Equations (4) and (5) are identical to those given by Herzberg . 

It is clear that if w1 and w are known from spectroscopic 

measurements, K1 and K2 may be calculated. Furthermore, if 

frequencies for an isotopic molecule are available, in principle 

K may also be found, with slight adjustments to the original 

values of K1 and K 2 .  

3 

3 

For motion perpendicular to the molecular axis, we introduce 

a2 and a3, displayed in Figure 2(b) as bow transverse springs 6 
1' 
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ANDERSON AND L E F E B V R E  128 

symbols. The equations of motion in the x or y direction are 

identical to those for the stretching modes with 6 ’ s  replacing 

K ’ s .  However, in addition to the zero frequency pure 

translational mode, the condition for a pure rotation leads to 

relations between the a ’ s ,  which will now be derived. 

For a linear triatomic ABC molecule with dimensions as shown 

in Figure 1 (a), we assume that the centre of mass, 0 ,  is a 

distance .! from the middle atom, B. Then, for a pure rotation 

through an angle a about 0 ,  the transverse displacements are as 

f 01 lows: 

0 

x 1 = (el - to),; x 2 = -.!a; 0 x 3 = -ko + L 2 ) a  
If we substitute these values into any two of the original 

equations of motion and in addition put the accelerations equal 

to zero (since there can be no net restoring forces for a pure 

rotation), we obtain the following relations between the 

transverse force constants: 

6 = a t / . !  = - 6  1 + e / e  ( 6 )  

Parenthetically, we note that for a centrosymmetric triatomic, 

(el = 1 2 ) ,  these reduce to 61 = 6 = -26 as found in the earlier 

1 2 2  1 3 [ 2 1 1  

2 3 

paper’. 

When the secular determinant obtained previously (with 6’s 

replacing K ’ s )  is expanded, not only is the coefficient D of 

equation (1)  equal to zero (giving a root w = 0 corresponding to 

a pure translation), but the expression for the coefficient C, 

given by 

c = (s1a2 + 6,a3 + a 2 ~ 3 ) ( m 1  + m2 + m3)/mlm2m3 
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CARTESIAN DYNAMICS 129 

also reduces to zero, because of the relations between the a ' s ,  

equations (6). Hence a second root has o = 0, and this clearly 

corresponds to the pure rotation. 

The remaining non-zero root is given by the equation 

This may be expressed as a function of any one of the a's, by 

using equations (6). The simplest form is in terms of 6 . 
3' 

2 

w2 2 = -63[pfil + (el + e2] /m2 + t:/m3]/ele2 ( 7 )  

7 This is equivalent to the expression given by Herzberg , if his 

K = -e .! 6 . Clearly, if the bending mode frequency, w is 

measured spectroscopically and if the bond lengths of the 

molecule are known, 6 or K can be evaluated directly. 

RESULTS 

6 1 2 3  2' 

3 6 

For the simple case where K is neglected, the 3 observed 

spectroscopic frequencies are sufficient to solve for the 3 

principal force constants K 1 ,  K2 and 6 Values of these 

frequencies and the bond lengths ! and e2 for a number of 

non-centrosymmetric linear triatomics are listed in Table 1 .  

Corresponding values for the force constants, calculated from 

equations (4). (5) and (71, are given in Table 2. With these 

values of the force constants, normal mode frequencies for a 

3 

3'  

1 

number of isotopic molecular species may be calculated and 

compared with experimental values, as shown in Table 3 .  

It is known from similar calculations on centrosymmetric 

triatomics , that the force constant representing the interaction 

between the outside atoms, here designated K is not negligible, 

1 

3' 
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TABLE 1 

ANDERSON AND LEFEBVRE 

Bond Lengths and Normal Mode Frequencies of ABC Linear Molecules* 

el l2 
Molecule 

( A )  
1.15 1.23 

ocs 1.16 1.54 

HCN 1.06 1.15 

ClCN 1.76 1.15 
BrCN 1.93 1.15 

I CN 2.12 1.15 

N2° 

+ 
W W W 

1 2 3 
( cm-l 1 

2224 589 1285 
2002 520 859 

3310 712 2097 

774 378 2216 

575 342 2198 

486 304.5 2188 

*Data selected from Refs. 7, 8, ‘The usual notation has been 
changed so that w refers to the C-N stretch for all four cyanide 
molecules listed. 

3 

TABLE 2 

Calculated Principal Force Constants of ABC Linear Molecules* 

Mo 1 ecule 
K1 

-6 
K2 3 

[ u-cmb2 1 

N2° 
ocs 
HCN 
ClCN 
BrCN 
I CN 

(complex values) 8.25~10’ 

1. 1iX1o7 2.73~10~ 6. O6x1O5 
9. 9ox106 3.06~1 O7 3.44~10’ 

9. 19x106 2. 87x107 3. 0 0 ~ 1 0 ~  

6. 98x106 2. 91x107 2.42~10’ 

5.39~10~ 2.93~10~ 1 .85~10 ’  

*Working units from K = pw2 with p (reduced mass) in atomic mass 
units (u and w in wavenumbers (cm-’1. Multiply table entries by 
5.90~10- to convert to N/m or by 5.90~10-~ for dynelcm. K3 put 
equal to zero (see text). 
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CARTESIAN DYNAMICS 131 

TABLE 3 

Comparison of Calculated and Observed Frequencies (cm-l) for 
Isotopic Molecules 

Molecule Calculated Frequencies* Observed Frequencies 
u W 0 w W 0 

1 2 3 1 2 3 

HCN 2603 568 1925 2630 569 1925 

ClCN 736 377.5 2215 736 378 2215 

35C 1 13CN 738.5 367 2162 738 367 2164 

37C 1 3CN 730 367 2162 730 367 2163 

BrCN 573.5 342 2199.5 573 342 2198 

79Br'3CN 568.5 332 2148 568 332 2147 

81Br' 3CN 567 332 2148 566 332 2147 

2 

37 

81 

*Using force constants listed in Table 2. 

TABLE 4 

Optimized Force Constants and Stretching Mode Frequencies 
for N 0 Isotopic Molecules 

2 

Molecule Force Constants (u-cm-2) 

14 2.698~10~ 1.896~10~ 1.547~10~ 
N2° 

1 4  

N2° 

Frequencies (cm-' 1 
Calculated Observed- 

3 
w 0 0 0 

1 3 1 

2224 1285 2224 1285 

2204 1267 2202.5 1271 

2175 1284 2178 1281 

2154 1266 2156 1266 

15 1 4  N NO 

N NO 1 4  15 

15 
N2° 

* Data from Ref. 10. 
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132 ANDERSON AND LEFEBVRE 

although always much smaller than those between bonded atoms. In 

order to estimate K3 for ABC type molecules, we can in principle 

make use of the stretching frequencies from isotopic species, w‘ 

and w ‘ .  However, for all but one of these non-centrosymmetric 

molecules, it was found that a best fit to the four frequencies, 

w w w’  and w’ obtained from an optimization routine known as 

SIMPLEX’, gave force constants similar to those in Table 2, that 

is with K3 essentially zero. Only for the N20 molecule was a 

finite value of K required. In fact, in this case if K3 = 0, 

complex values for K and K2 are obtained, which is clearly 

unacceptable from a physical viewpoint. We therefore adjusted 

the three stretching constants for the best fit for the 

molecule and then used these values to calculate the frequencies 

for a number of isotopic species. The results of these 

computations are given in Table 4, which lists the optimized 

force constants and calculated frequencies, together with the 

observed values of Begun and Fletcher . Of course, the value of 

the bending constant, 63, is not affected by these adjustments to 

the stretching constants. 

DISCUSSION 

1 

3 

1 ’  3’ 1 3’ 

3 

1 

1 4  

N2° 

10 

It should first be pointed out that two distinct sets of 

values of K and K are obtained from equations ( 4 )  and (5). 

Both are mathematically valid and, superficially at least, 

physically reasonable, but inspection and comparison with data 

from other molecules allows the selection given in Table 2 to be 

made. It may be seen there that the bending constant is 

1 2 
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CARTESIAN DYNAMICS 133 

appreciably smaller than the two stretching constants for all 

molecules. This was also the case for the centrosymmetric 

molecules discussed in an earlier paper , and interpreted as a 

consequence of the transverse restoring forces being 

electrostatic rather than elastic in origin. For the four 

cyanide molecules, the approximate constancy of the C-N 

stretching constant K is noted, as are the decreasing strengths 

of the halogen-carbon stretching constants, and the bending 

constants, a3, with increasing halogen mass. The agreement 

between the calculated and observed isotopic frequencies listed 

in Table 3 is very satisfactory, indicating that the simple model 

used is acceptable for most purposes. Only for DCN is there a 

slight discrepancy for w and this may be readily explained as a 

result of different anharmonic contributions (neglected in this 

model) for the H and D motions. In the harmonic approximation, a 

slight increase in the value of the D-C force constant K from 

1 

2 

K1, 

1 '  

1 '  

9.90 

with 

x lo6 to 10.14 x lo6 ucm-2, is required to obtain agreement 

the observed value of 2630 cm-' for w . 

The case of the N 0 molecule is of particular interest. The 

1 

2 

optimized value of K required to give non-complex solutions, is 

much smaller than K1 and K2, as expected, and similar in 

magnitude to the corresponding force constant in the 

centrosymmetric triatomics . The calculated isotopic frequencies 

(Table 4) are in excellent agreement with observed values, 

indicating that this four parameter harmonic model is an 

acceptable representation of the vibrations of this molecule. 

3'  

1 
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ANDERSON AND LEFEBVRE 134 

Some of the frequency changes resulting from isotopic 

substitution are, at first sight, somewhat surprising. For 

example, changing the outside N atom has an appreciable effect on 

w usually described as the N-0 stretch , whereas changing the 

central N atom has negligible effect. The explanation of these 

7 

3' 

phenomena is found in an examination of the eigenvectors. For 

N 0, because of the similarity of the three atomic masses, the 

normal modes are similar to those for the centrosymmetric 

triatomics such as CO (or N20 if the atomic arrangement was 

N-0-N) .  The stretching modes are here described as symmetric and 

anti-symmetric, and in the former the central atom is static. 

For N 0, the eigenvectors for w indicate a very small amplitude 

for the motion of the central N atom with larger and 

approximately equal and opposite displacements for the outside 

atoms. Conversely, for w l ,  the central atom has the largest 

displacement. The eigenvectors for N 0 are shown in Figure 1 

(c). The calculated and observed frequency shifts on isotopic 

substitution are readily understandable in these terms. The 

labels N-N stretch and N - 0  stretch for w and w3, respectively, 

are clearly inappropriate for N 0. 

2 

2 

2 3 

2 

1 

2 

Although the vibrational spectra of these molecules in their 

crystalline states have been observed , relatively little 

work on their lattice dynamics has been published. A l l  the 

molecules discussed above, except N20,  form linear chains in the 

crystal, with one or two molecules per unit cell, and should be 

relatively simple systems to analyse, by using extensions of the 

11 ,12  
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CARTESIAN DYNAMICS 135 

simple spring model discussed here and already applied to other 

molecular solids2-6. Work is planned in this laboratory on 

similar applications to these ABC type molecular crystals. The 

case of N20 is different, as this forms a cubic crystal similar 

to that for C02, but with end-to-end disorder of the molecular 

orientation, and hence is difficult to model. 
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